Improved Lower Bounds on the Total Variation Distance for the Poisson Approximation

نویسنده

  • Igal Sason
چکیده

New lower bounds on the total variation distance between the distribution of a sum of independent Bernoulli random variables and the Poisson random variable (with the same mean) are derived via the Chen-Stein method. The new bounds rely on a non-trivial modification of the analysis by Barbour and Hall (1984) which surprisingly gives a significant improvement. A use of the new lower bounds is addressed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Improved Lower Bounds on the Total Variation Distance for the Poisson Approximation

New lower bounds on the total variation distance between the distribution of a sum of independent Bernoulli random variables and the Poisson random variable (with the same mean) are derived via the Chen-Stein method. The new bounds rely on a non-trivial modification of the analysis by Barbour and Hall (1984) which surprisingly gives a significant improvement. A use of the new lower bounds is ad...

متن کامل

IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES An Information-Theoretic Perspective of the Poisson Approximation via the Chen- Stein Method

The first part of this work considers the entropy of the sum of (possibly dependent and non-identically distributed) Bernoulli random variables. Upper bounds on the error that follows from an approximation of this entropy by the entropy of a Poisson random variable with the same mean are derived via the Chen-Stein method. The second part of this work derives new lower bounds on the total variat...

متن کامل

An Information-Theoretic Perspective of the Poisson Approximation via the Chen-Stein Method

The first part of this work considers the entropy of the sum of (possibly dependent and non-identically distributed) Bernoulli random variables. Upper bounds on the error that follows from an approximation of this entropy by the entropy of a Poisson random variable with the same mean are derived via the Chen-Stein method. The second part of this work derives new lower bounds on the total variat...

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Uniform asymptotics of Poisson approximation to the Poisson-binomial distribution

New uniform asymptotic approximations with error bounds are derived for a generalized total variation distance of Poisson approximations to the Poisson-binomial distribution. The method of proof is also applicable to other Poisson approximation problems. MSC 2000 Subject Classifications: Primary 62E17; secondary 60C05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013